REVIEW OF LAST TIME

Security In symmetric encryption:
The IND-CPA security game
A bit of PRF
How to prove OTP + PRG secure

Proof techniques
Game hopping
Game equivalence by indistinguishability of games

INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

INSA -

(&:1RISA

PRPSs AND PRFS
@

‘ Block ciphers, cryptanalysis, symmetric
encryption

PRG IN OTP

Recall the OTP
Traditional OTP for = M = {0,1}™"

Choose random k<«

Encrypt messagemto:c:= k@ m
Decrypt ciphertext c as: m == c D k

Now replace random key generation by PRG:
OTP for M = {0,1}™ with = {0,1}"* and n <m
Use a bounded-secure PRG G:{0,1}"*— {0,1}"™

$
KeyGen: choose (once) k « ¥

Encrypt message masc := G(k) @ m
Decrypt message as: m :=c @ G (k)

STREAM AND BLOCK CIPHERS

STREAM CIPHERS

Based on pseudorandom generators

Usually in the PRG + OTP structure, encrypting
traffic as it 1s sent

Note: symmetric in nature, and require synhroniza-
tion for the masking string (output of PRG)

Some examples: SEAL, A5, RC4

If PRG 1s efficient (it usually 1s), the construction is
very fast

RC4 1s probably the most often used stream cipher

today, but some of its output bytes are biased, leading
to breaking WEP and TLS + RC4

RC4

Designed by Ron Rivest in 1987
Used 1n protocols like TLS/SSL, WEP, etc.

Starts with a key of 256 bytes: k, ... k,s5 (if not
long enough, we pad it with 1tself)

Also need permutation on (byte) positions 0, ..., 255,
denoted S, which 1s shuffled at each round

(GENERIC STRUCTURE

» Stream ciphers must generate “pad” as we go

Keyl SK

Key-stream
generation

Stream M

Keyl SK

Key-stream
generation

Stream&

(GENERIC STRUCTURE

Stream ciphers must generate “pad” as we go

Start with key K and a permutation S

Do Key-Scheduling (KSA): use the key to 1nitiate
permutation

Do PR generating algorithm (PRGA) to generate the
key-stream

Main problem: key-streams will eventually repeat
themselves, and that’s where cryptanalysis strikes

RC4 DESCRIPTION

Initialization:
SO — O, Sl — 1, 5255 = 255
Key Ko, K255
Current index j =0

KSA (instantiate S)
Fori =1 to 255:
j =+ S;+ K;) mod 256
Swap S; and S;
PRGA (use S to get key-byte)
Update:i =i+ 1 mod 256 andj=j+ S; mod 256
Swap S; and §;
Output S, withr = §; + §; mod 256

OUTPUTTING THE KEY STREAM

0 1 2 S[1]+S[5] 1 j 253 254 255
S

Source: Wikipedia.org

RC4 PROBLEMS

Ideally:
We want that the output bytes be uniformly random

Or at least, that they are indistinguishable from
uniformly random, by a poly-time distinguisher

Bias in some of the bits:
Probability that first two bytes are 0 is 2716 + 2732

More attacks were recently published by Paterson et
al.

At the moment RC4 is discouraged by TLS/SSL (but
because 1t’s efficient, it’s still being used a lot)

BL.OCK CIPHERS

Stream ciphers pad plaintext with PRG output
Principle usually follows OTP

Block ciphers act like a symmetric encryption on
plaintext blocks
Idea: plaintext is a string of n bits, e.g. 64, or 128

A good permutation of the bits makes the output look
unrelated to the input

Given key K and message M of size n:
Encryption Ency maps M to a ciphertext C
Decryption Decy maps ciphertext to plaintext

PERMUTATIONS AND PRPS
Ideally:

Use a truly random permutation on the input domain

However, that means we need a key as large as the
message

In practice:
Use a pseudorandom permutation (PRP)
Then rely on indistinguishability of PRPs from RPs

The block cipher takes inputs of size n and returns
output of same size
If we need to encrypt bigger texts, use one of several modes

ECB MODE

» Very simple: encrypt each block separately:

M, M,

B || B +

n

ECB PROPERTIES

Advantages

Highly efficient and not harder to implement securely
than the single-block encryption method

Parallelizable

Security:

What happens if we have repetition in the input
message? (M]_, MZ — Ml' M3)

How about substitution/addition of message blocks?
Known for being insecure against active attackers

CBC MODE

Link blocks together by using output blocks in
the encryption of the following blocks

An IV 1s used as a “seed”, but can be sent in clear
9

\Y M, M, M,
| |

D 5 .. —D

Ex Ex Ex

CBC PROPERTIES

Error handling:
Say one ciphertext block 1s corrupted
This only affects the decryption of the next block

\Y M, M, M,
| I

D & . —D

Dy Dy Dy

CBC SECURITY

Not easy to insert messages
Plaintext patterns (repetitions, etc.) not detectable

The IV:

If IV 1s chosen uniformly at random and the encryption
algorithm is a “good” permutation, then CBC encryption
1s a “good” encryption scheme

If IV 1s constant, CBC encryption does not hide prefixes

You will often hear “do not use CBC modes 1n
TLS/SSL”. This 1s sound advice, but not because of
weaknesses in the design of encryption

RECALL: GOOD SYMMETRIC ENCRYPTION

$
k « KGen(1Y)

be{01)

(mg, my) « AERCO(y) with |mg| = |my]|
¢ < Enc(k,my)

d « AEnC()()/, C)

Awinsiffd = b

(q.€)-secure Symmetric Encryption:

A symmetric-key encryption scheme SEnc is (q, €)-
secure if, and only if, an adversary making at most q

. : 1
queries to Enc wins w.p. at most > + €

IND-CPA AND DETERMINISTIC ENCRYPTION
A generic IND-CPA attack:

€ chooses K by running Key Generation
% picks M, M; and sends them to the Encg oracle:

C; = Encxy(M;) for i=0,1
$
% sends My, M; to € who encrypts M, for b < {0,1}:

If b =0, then C := Encg(My)
Else, C :== Encg (M)

When £ receives C, it compares 1t with (g, Cy, ghen
returnsd =i 1f C = C;; i € {0,1}; else o2 sets d «{0,1}

This always works if the encryption is deterministic.
Why?

CBC WITH PREDICTALE IV

Bug in TLS 1.0: IV for message M’ 1s last cipher-
text block of previous message M

Attack:

First ask encryption of 0, receiving (IV, Encg (IV))

Remember last ciphertext block, call it IV’
This 1s the IV for the next ciphertext

Submit M, = IV @ IV’ and a random M, to challenger
Now, if b = 0, then Encg(IV' @ (IV @ IV")) = Encg(IV)

CTR MODE ENCRYPTION

Different IVs rather than a single one
Parallelizable; IVs link ciphertext blocks together

M, v M, IV + 1 Mo | [\w+n—1
Ex Ex | Ex
N\ N\ N\
L/ U/ U/

(4 (; Cn

CTR MODE PROPERTIES

Efficiency and implementation:
Fully parallelizable once IV known

Some pre-processing can be done (such as encryption
of all vectors from IV to IV+n-1)

Security:
Note that this time, the length of IV need not be
exactly equal to n

Hence, the symmetric encryption scheme is a
function, rather than a permutation

In CTR mode, if encryption scheme i1s a PRF, then in
CTR mode it has IND-CPA security

WHAT IS A PRF?

Family of functions F:{0,1}*x {0,1}"* - {0,1}™

First parameter 1s the key, chosen only once, so we
regard the function as Fy:{0,1}"* - {0,1}™

Notion of PRF (indistinguishability from random):

length k 1 0
T X \“”/ [

E
2%

WHAT IS A PRF?

Family of functions F:{0,1}*x {0,1}"* - {0,1}™

First parameter 1s the key, chosen only once, so we
regard the function as Fy:{0,1}"* - {0,1}™

Notion of PRF (indistinguishability from random):

ke 0,1}k Gp(x)

d « Ab™) If b =0, return R(x)
Else, return Fg (x)

Awinsiff. d = b

(k, €)-PR-ness: k queries to G,, A wins w.p. at most % + &

PRFS AND PRPS

For a keyed function Fg:{0,1}" — {0,1}",we may
also speak of permutations
Permutation: domain and range are the same
Bijection: Fy 1s keyed permutation if for all K, Fy is 1-
to-1 (byective; thus invertible)

Pseudo-random permutation:
Keyed Permutation

Indistinguishability from a random permutation:
akin to PRF game, but with equal domain/range, and
the bijective property

IND-CPA SECURITY FROM PRF

Assumption:
Use PR function F:{0,1}* x {0,1}" - {0,1}"
Choose secret key K of length k as output of Kgen
Both encryptor and decryptor know F and key K

Encryption of some message M € {0,1}":

$
Pick random number r < {0,1}"

Encrypt M to (r; M @ Fr (1))

Decryption of ciphertext C = (Cy; C5):
Decrypt C to M == C, @ Fx(Cy)

SECURITY OF THIS CONSTRUCTION

» IND-CPA security:

- For any adversary ¢# against the IND-CPA security of the
encryption scheme, making k queries to the encryption

oracle and winning w.p. % +&4 ...
.. There exists an adversary B against the pseudo-

randomness of the function F, which makes k queries to its
generation oracle, and wins with probability:

1 k
Pb 2+€A 2”

‘ Why the additional term? \

» Proof: 1n TDs

MESSAGE AUTHENTICATION
CODES (MACS)

UNFORGEABILITY AND MACS

Message Authentication Codes prove message
Iintegrity and indicate its provenance (sender)

MACs do not hide the message they authenticate
Quite the opposite: often you would send M along

MACs do not entirely hide the key either

They can reveal a part of the key, as long as it 1s still
hard to recover the other part (say a half)

Their purpose 1s to authenticate, not to hide

MAC SCHEME SYNTAX

» Tuple of algorithms (KGen, MAC, Vf) s.t.:

- KGen(1Y) outputs symmetric key k

= MAC(k,M) outputs tag T for message M

= Vf(k,M,T) outputs 1 if T verifies for M and 0 otherwise
|

k
KGen]
M,k
T, M

» Correctness (of MAC and Vi)
- For any K,M, if T = MAC(K; M), it holds Vf(K; M,T) = 1

k

MAC SECURITY INTUITION

How do we use a MAC?
Assume Alice sends message and MAC to Bob

Say message 1s unencrypted, an update or a file
An adversary may intercept, change, or replace 1t
Bob receives the message and the MAC
Bob verifies the MAC. Ideally:

If the MAC verifies: it’s Alice’s untampered message
If the MAC verification fails: the message was tampered with

A MAC cannot be forged for a new message
But using an old (M, T)-tuple will lead to verification

THE UNFORGEABILITY GAME

» Not real/random indistinguishability this time
» Unforgeability of fresh messages:

|

_/
g
0/1

- Adv. wins iff. M* & {Mj, ..., M,,)} and Vf(K; M*,T*) = 1 .

T;

GAME DESCRIPTION

» A plays the game against challenger
- First, challenger generates key, but keeps it private

= A can query a MAC oracle on messages m
o The challenger uses MAC(k, m) to return output

= Finally, A returns tuple (m*, T%)

» A wins iff. Vi(k, m*,T*) = 1 and m* not queried to Sign

UNFORGEABILITY IN GAME NOTATION

Existential Unforgeability against Chosen Message
Attacks — EUF-CMA:

b A
K < KGen(1%)
(M*,T) « 4K
% wins iff. M* not queried to MACx (M™)
Ve (M*, T*) = 1

Trivial attacks:
A could just guess a correct tag, or a correct key

The probability is 2/MACk()I 4 7IKSpace]
Goal: make that probability negligible in 4

(k, €)-security: &2 with k MAC queries wins w.p. €

CONSTRUCTING MACS

Two ways of doing it:
Using block ciphers

Based on hash functions (which we will see later)

CBC-MAC:

0..0 M, M, M,
D & BT —D
Ex Ex Ex

CBC-MAC AND ITS SECURITY
If the block cipher Ey 1s a PRP, then:

If we consider only messages of a fixed length, we can
prove CBC-MAC 1s a PRF (no proof here)

Any MAC scheme that 1s a PRF 1s unforgeable (but
not the reverse). Proof in TDs

However, if we can allow messages of ANY
length, we can play on prefixes to get a forgery

A PREFIX-BASED ATTACK

Ask for the MAC of some 1-block message M;:
C; = Ex(0 D M)

Then ask for the MAC of this ciphertext:
C; = Ex(0 @D Cy)

Look at MAC of M| 0
Collision: C; and M| 0

0...

0

Generalization of attack: TDs

MACS FOR VARIABLE LENGTHS

Problem 1s that MAC of messages of any lengths 1s of
length 1 block exactly (last c-text block)

We get collisions of messages of variable length
Obvious solution: authenticate the length, too.

Option 1: if length n 1s known: MAC(K; n, M4, ..., M,,)
In theory, perfect; in practice, Vaudenay attacks

Option 2: length unknown, 1 key: MAC(K; M4, ..., M,,,n)
Broken in 1984

Option 3: use 2 keys: E /1 (MACg(My, ..., M}))

HASH FUNCTIONS AND MACS

HASH FUNCTIONS

Another way to build MACs (will see later)

What 1s a hash function?
Function f:{0,1}* - {0,1}" with variable-length input
and fixed-length output
Inevitably, this means collisions. Why?
Ideally not many, and hard to find

SECURITY OF HASH FUNCTIONS

Weak collision resistance: for any x € {0,1}" it 1s hard
to find x’ # x such that h(x") = h(x)

For any x (universal) there exists no adversary ¢# which,

given x and access to h, can output such an x" with non-
negligible probability

$.
Average: for x «{0,1}, there exists no adversary o2

which, given x and access to h, can output such an x’ with
non-negligible probability

Strong collision resistance: it is hard to find any pair
x,x # x such that h(x) # h(x')

In general, easier to find than for fixed x

FINDING COLLISIONS

The birthday paradox:

Probability 1 in 23 people have the same bday as Henri
Poincaré (April 29th) : 23/365
Probability that 2 people in 23 have the same birthday :

2
365(365Y (_1 : : 1
223)) (365) , which gives about -

What does this mean for us?
First case: stimilar to weak collision resistance
Second case: similar to strong collision resistance

MERKLE DAMGAARD

Arbitrary-length input from fixed-length input
hash function
Say h:{0,1}°1? - {0,1}16° (standard input and
output sizes)

Want to extend it to H: {0,1}* — {0,1}'6°

How do we do this?

MD: kind of CBC-mode extension
M = M, ...M; with length of M; equal to 512-160 = 352

0160

| h | —HM)

L) h
M, M, My

SECURITY OF THIS CONSTRUCTION

Theorem:

For any adversary ¢# that can find, with non negligible
probability p o @ collision M, M' #+# M such that H(M) =
HM) ..

... There exists an adversary B that can find messages
m,m’ # m with h(m) = h(m") with non-negligible proba-
bility p B

Conclusion: as long as h is collision-resistant, H is
also collision-resistant

COLLISIONS AND COLLISIONS...

First signs of weakness:

Partial collisions, or collisions only in latter stages of
the bigger H function

Further weaknesses:

First true collisions appear, but they are heavily con-
trived: 1t’s a strong collision-resistance attack

While valid they fail to convince users that this means in a
short time the hash function will be broken

Hash function i1s “broken”:

We get collisions on chosen messages: given certifi-
cate M, we find certificate M' = M s.t. H(M) = H(M')

MACS FROM HASH FUNCTIONS

To key or not to key: MACs use keys, hashes do not

From no-key to keys:

First idea: hash key, then message (key for authen-
tication, m for integrity): problem is something similar to
CBC prefix problem for Merkle Damgaard

Second idea: hash message, then key (now message 1is
variable prefix, rather than the constant k): can do birth-
day attack on MAC to find collision in hash function h

Better solution: use something like HMAC

HMAC

Given key K, message m, hash function h

Also take 2 fixed, known 64-bit strings: pad;,, pad,yt
Key K of 64 bits — or padded to that length if necessary

HMAC is defined then as:
MACK(m) = h(K 69 padout ’ h(K @ padinr m))

There exists a proof (which we will not cover here), that
says that if HMAC is insecure, then:

h 1s not collision resistant; or

The output of h 1s “predictable”

UNFORGEABILITY, PRF, PRP

HMACs must only offer unforgeability

However, the use of the hash function gives more
security than just unforgeability

Pseudorandomness vs. Unforgeability
(Keyed) Pseudorandomness (PRP, PRF), always
1mplies unforgeability
However, one can have an unforgeable scheme whose
output is not indistinguishable from random

WHAT WE LEARNED TODAY

CIPHERS

Stream ciphers
Most of them rely on OTP + PRG paradigm
RC4 1s very efficient, but biased and in fact insecure

Block ciphers
Ideally a PRP of a message of a specific length

Can be extended to longer messages by using modes
ECB is bad, CBC 1s average, CTR seems best

Ideally they are PRFs

MESSAGE AUTHENTICATION CODES

MACs provide a proof of integrity and authenti-
cation of sender, by means of a shared key

Security: MACs should be existentially unforge-
able under chosen ciphertext attacks (EUF-CMA)

Constructions:
Based on block ciphers
Using hash functions

HASH FUNCTIONS

Take input of varying length and outputs fixed-
length strings

Hash functions must be collision-resistant
Weak CR: given x, find x’ with H(x) = H(x")
Strong CR: finx x, x" with H(x) = H(x')

Can be extended from smaller compression functions
to larger hash functions using Merkle Damgaard

HMAC:

Uses hash function twice, with outer and inner pad
functions

