
REVIEW OF LAST TIME

 Security in symmetric encryption:

 The IND-CPA security game

 A bit of PRF

 How to prove OTP + PRG secure

 Proof techniques

 Game hopping

 Game equivalence by indistinguishability of games



PRPS AND PRFS

Block ciphers, cryptanalysis, symmetric 

encryption



PRG IN OTP

 Recall the OTP

 Traditional OTP for K =M = {0,1}𝑚

 Choose random 𝑘՚
$
K

 Encrypt message 𝑚 to : 𝑐 ≔ 𝑘 ⊕𝑚

 Decrypt ciphertext 𝑐 as: ෝ𝑚 ≔ 𝑐 ⊕ 𝑘

 Now replace random key generation by PRG:

 OTP for M = {0,1}𝑚 with K = {0,1}𝑛 and 𝑛 < 𝑚

 Use a bounded-secure PRG 𝐺: {0,1}𝑛→ 0,1 𝑚

 KeyGen: choose (once) 𝑘 ՚
$
K

 Encrypt message 𝑚 as 𝑐 ≔ 𝐺 𝑘 ⊕𝑚

 Decrypt message as: ෝ𝑚 ≔ 𝑐 ⊕𝐺(𝑘)



STREAM AND BLOCK CIPHERS



STREAM CIPHERS

 Based on pseudorandom generators

 Usually in the PRG + OTP structure, encrypting 

traffic as it is sent

 Note: symmetric in nature, and require synhroniza-

tion for the masking string (output of PRG)

 Some examples: SEAL, A5, RC4

 If PRG is efficient (it usually is), the construction is 

very fast

 RC4 is probably the most often used stream cipher 

today, but some of its output bytes are biased, leading 

to breaking WEP and TLS + RC4



RC4

 Designed by Ron Rivest in 1987

 Used in protocols like TLS/SSL, WEP, etc.

 Starts with a key of 256 bytes: 𝑘0, … 𝑘255 (if not 

long enough, we pad it with itself)

 Also need permutation on (byte) positions 0,… , 255, 

denoted 𝑆, which is shuffled at each round



GENERIC STRUCTURE

 Stream ciphers must generate “pad” as we go
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GENERIC STRUCTURE

 Stream ciphers must generate “pad” as we go

 Start with key K and a permutation S

 Do Key-Scheduling (KSA): use the key to initiate 

permutation

 Do PR generating algorithm (PRGA) to generate the 

key-stream

 Main problem: key-streams will eventually repeat 

themselves, and that’s where cryptanalysis strikes



RC4 DESCRIPTION

 Initialization:

 𝑆0 = 0; 𝑆1 = 1;… 𝑆255 = 255

 Key 𝐾0; … 𝐾255
 Current index  𝑗 = 0

 KSA (instantiate S)

 For 𝑖 = 1 𝑡𝑜 255:

 𝑗 ≔ 𝑗 + 𝑆𝑖 + 𝐾𝑖 mod 256

 Swap 𝑆𝑖 and 𝑆𝑗

 PRGA (use S to get key-byte)

 Update: 𝑖 = 𝑖 + 1 mod 256 and 𝑗 = 𝑗 + 𝑆𝑖 mod 256

 Swap 𝑆𝑖 and 𝑆𝑗

 Output 𝑆𝑟 with 𝑟 = 𝑆𝑖 + 𝑆𝑗 mod 256



OUTPUTTING THE KEY STREAM

Source: Wikipedia.org



RC4 PROBLEMS

 Ideally: 

 We want that the output bytes be uniformly random

 Or at least, that they are indistinguishable from 

uniformly random, by a poly-time distinguisher

 Bias in some of the bits:

 Probability that first two bytes are 0 is 2−16 + 2−32

 More attacks were recently published by Paterson et 

al.

 At the moment RC4 is discouraged by TLS/SSL (but 

because it’s efficient, it’s still being used a lot)



BLOCK CIPHERS

 Stream ciphers pad plaintext with PRG output

 Principle usually follows OTP

 Block ciphers act like a symmetric encryption on 

plaintext blocks

 Idea: plaintext is a string of 𝑛 bits, e.g. 64, or 128

 A good permutation of the bits makes the output look 

unrelated to the input

 Given key 𝐾 and message 𝑀 of size 𝑛:

 Encryption Enc𝐾 maps 𝑀 to a ciphertext 𝐶

 Decryption Dec𝐾 maps ciphertext to plaintext



PERMUTATIONS AND PRPS

 Ideally:

 Use a truly random permutation on the input domain

 However, that means we need a key as large as the 

message

 In practice:

 Use a pseudorandom permutation (PRP)

 Then rely on indistinguishability of PRPs from RPs

 The block cipher takes inputs of size 𝑛 and returns 

output of same size

 If we need to encrypt bigger texts, use one of several modes



ECB MODE

 Very simple: encrypt each block separately:

𝑀1 𝑀2 𝑀𝑛

𝐶1 𝐶2 𝐶𝑛

𝐸𝐾 𝐸𝐾 𝐸𝐾



ECB PROPERTIES

 Advantages

 Highly efficient and not harder to implement securely 

than the single-block encryption method

 Parallelizable

 Security:

 What happens if we have repetition in the input 

message?   (𝑀1, 𝑀2 = 𝑀1, 𝑀3…)

 How about substitution/addition of message blocks?

 Known for being insecure against active attackers



CBC MODE

 Link blocks together by using output blocks in 

the encryption of the following blocks

 An IV is used as a “seed”, but can be sent in clear

𝑀1 𝑀2 𝑀𝑛

𝐶1 𝐶2 𝐶𝑛

𝐸𝐾 𝐸𝐾 𝐸𝐾

IV

⊕ ⊕ ⊕.....



CBC PROPERTIES

 Error handling: 

 Say one ciphertext block is corrupted

 This only affects the decryption of the next block

𝑀1 𝑀2 𝑀𝑛

𝐶1 𝐶2 𝐶𝑛

𝐷𝐾 𝐷𝐾 𝐷𝐾

IV

⊕ ⊕ ⊕.....



CBC SECURITY

 Not easy to insert messages

 Plaintext patterns (repetitions, etc.)  not detectable

 The IV:

 If IV is chosen uniformly at random and the encryption 

algorithm is a “good” permutation, then CBC encryption 

is a “good” encryption scheme

 If IV is constant, CBC encryption does not hide prefixes

 You will often hear “do not use CBC modes in 

TLS/SSL”. This is sound advice, but not because of 

weaknesses in the design of encryption



RECALL: GOOD SYMMETRIC ENCRYPTION

 𝑘՚
$
KGen(1𝛾)

𝑏՚
$

0,1

m0, m1 ՚ 𝐴Enc 𝛾 with 𝑚0 = |𝑚1|

𝑐 ՚ Enc(𝑘,𝑚𝑏)

𝑑 ՚ 𝐴Enc 𝛾, 𝑐

𝐴 wins iff 𝑑 = 𝑏

 (𝒒, 𝝐)-secure Symmetric Encryption: 

A symmetric-key encryption scheme SEnc is (q, 𝜖)-
secure if, and only if, an adversary making at most 𝑞

queries to Enc wins w.p. at most 
1

2
+ 𝜖



IND-CPA AND DETERMINISTIC ENCRYPTION

 A generic IND-CPA attack:

 C chooses 𝐾 by running Key Generation

 A picks 𝑀0, 𝑀1 and sends them to the Enc𝐾 oracle:

𝐶𝑖 ≔ Enc𝐾 𝑀𝑖 for 𝑖 = 0,1

 A sends 𝑀0, 𝑀1 to C, who encrypts 𝑀𝑏 for 𝑏՚
$
{0,1}:

If 𝑏 = 0, then 𝐶 ≔ 𝐸𝑛𝑐𝐾(𝑀0)

Else, 𝐶 ≔ 𝐸𝑛𝑐𝐾(𝑀1) .

 When A receives 𝐶, it compares it with 𝐶0,, 𝐶1, then 

returns 𝑑 = 𝑖 if 𝐶 = 𝐶𝑖; 𝑖 ∈ {0,1}; else A sets 𝑑՚
$
{0,1}

 This always works if the encryption is deterministic. 
Why?



CBC WITH PREDICTALE IV

 Bug in TLS 1.0: 𝐼𝑉 for message 𝑀′ is last cipher-

text block of previous message 𝑀

 Attack:

 First ask encryption of 0, receiving (𝐼𝑉, Enc𝐾(𝐼𝑉))

 Remember last ciphertext block, call it 𝐼𝑉′

 This is the IV for the next ciphertext

 Submit 𝑀0 = 𝐼𝑉 ⊕ 𝐼𝑉′ and a random 𝑀1 to challenger

 Now, if 𝑏 = 0, then Enc𝐾 𝐼𝑉′ ⊕ 𝐼𝑉 ⊕ 𝐼𝑉′ = Enc𝐾(𝐼𝑉)



CTR MODE ENCRYPTION

 Different IVs rather than a single one

 Parallelizable; IVs link ciphertext blocks together

𝑀1

𝐶1

𝐸𝐾

IV

⊕

𝑀2

𝐶2

𝐸𝐾

IV + 1

⊕

𝑀𝑛

𝐶𝑛

𝐸𝐾

IV + n − 1

⊕

.....



CTR MODE PROPERTIES

 Efficiency and implementation:

 Fully parallelizable once IV known

 Some pre-processing can be done (such as encryption 

of all vectors from IV to IV+n-1)

 Security:

 Note that this time, the length of IV need not be 

exactly equal to n

 Hence, the symmetric encryption scheme is a 

function, rather than a permutation

 In CTR mode, if encryption scheme is a PRF, then in 

CTR mode it has IND-CPA security



WHAT IS A PRF?

 Family of functions 𝐹: {0,1}𝑘× 0,1 𝑛 → 0,1 𝑚

 First parameter is the key, chosen only once, so we 

regard the function as 𝐹𝑘: 0,1
𝑛 → 0,1 𝑚

 Notion of PRF (indistinguishability from random):

PRFK

Key 𝐾
length 𝑘

0/1

𝑅(𝑥)

?
? ?

?

𝐹𝐾(𝑥)
1 0

𝑥



WHAT IS A PRF?

 Family of functions 𝐹: {0,1}𝑘× 0,1 𝑛 → 0,1 𝑚

 First parameter is the key, chosen only once, so we 

regard the function as 𝐹𝑘: 0,1
𝑛 → 0,1 𝑚

 Notion of PRF (indistinguishability from random):

𝑘՚
$

0,1 𝑘

𝑑 ՚ A𝐺𝑏(∗)

A wins iff. 𝑑 = 𝑏

 (𝑘, 𝜀)-PR-ness: 𝑘 queries to 𝐺𝑏, A wins w.p. at most 
1

2
+ 𝜀

𝐺𝑏(𝑥)

If 𝑏 = 0, return 𝑅(𝑥)
Else, return 𝐹𝐾(𝑥)



PRFS AND PRPS

 For a keyed function 𝐹𝐾: 0,1
𝑛 → 0,1 𝑛,we may 

also speak of permutations

 Permutation: domain and range are the same

 Bijection: 𝐹𝐾 is keyed permutation if for all 𝐾, 𝐹𝐾 is 1-

to-1 (bijective; thus invertible)

 Pseudo-random permutation:

 Keyed Permutation

 Indistinguishability from a random permutation: 

akin to PRF game, but with equal domain/range, and 

the bijective property



IND-CPA SECURITY FROM PRF

 Assumption: 

 Use PR function 𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛

 Choose secret key 𝐾 of length 𝑘 as output of Kgen

 Both encryptor and decryptor know 𝐹 and key 𝐾

 Encryption of some message 𝑀 ∈ 0,1 𝑛:

 Pick random number 𝑟՚
$
0,1 𝑛

 Encrypt 𝑀 to (𝑟;𝑀 ⊕ 𝐹𝐾(𝑟))

 Decryption of ciphertext 𝐶 = (𝐶1; 𝐶2):

 Decrypt 𝐶 to ෡𝑀 ≔ 𝐶2 ⊕𝐹𝐾(𝐶1)



SECURITY OF THIS CONSTRUCTION

 IND-CPA security:

 For any adversary A against the IND-CPA security of the 

encryption scheme, making 𝑘 queries to the encryption 

oracle and winning w.p. 
1

2
+ 𝜀𝐴 …

 ... There exists an adversary B against the pseudo-

randomness of the function 𝐹, which makes 𝑘 queries to its 

generation oracle, and wins with probability:

𝑃𝑏 ≥
1

2
+ 𝜀𝐴 +

𝑘

2𝑛

 Proof: in TDs

Why the additional term?



MESSAGE AUTHENTICATION

CODES (MACS)



UNFORGEABILITY AND MACS

 Message Authentication Codes prove message 

integrity and indicate its provenance (sender)

 MACs do not hide the message they authenticate

 Quite the opposite: often you would send M along

 MACs do not entirely hide the key either

 They can reveal a part of the key, as long as it is still 

hard to recover the other part (say a half)

 Their purpose is to authenticate, not to hide



MAC SCHEME SYNTAX

 Tuple of algorithms KGen,MAC, Vf s.t.: 

 KGen(1𝛾) outputs symmetric key 𝑘

 MAC(k,M) outputs tag 𝑇 for message M

 Vf(k,M, T) outputs 1 if 𝑇 verifies for 𝑀 and 0 otherwise

 Correctness (of MAC and Vf)

 For any 𝐾,𝑀, if 𝑇 = MAC(𝐾;𝑀), it holds Vf 𝐾;𝑀, 𝑇 = 1

MAC

𝑀, 𝑘

Vf
𝑇,𝑀

𝑘

0/1

KGen

𝑘

𝑘



MAC SECURITY INTUITION

 How do we use a MAC?

 Assume Alice sends message and MAC to Bob

 Say message is unencrypted, an update or a file

 An adversary may intercept, change, or replace it

 Bob receives the message and the MAC

 Bob verifies the MAC. Ideally:

 If the MAC verifies: it’s Alice’s untampered message

 If the MAC verification fails: the message was tampered with

 A MAC cannot be forged for a new message

 But using an old (𝑀,𝑇)-tuple will lead to verification



THE UNFORGEABILITY GAME

 Not real/random indistinguishability this time

 Unforgeability of fresh messages:

MACK

𝑀𝑖

𝑇𝑖

𝑀∗, 𝑇∗VfK

0/1

 Adv. wins iff. 𝑀∗ ∉ {𝑀1, … ,𝑀𝑛} and Vf 𝐾;𝑀∗, 𝑇∗ = 1



GAME DESCRIPTION

 A plays the game against challenger

 First, challenger generates key, but keeps it private

 A can query a MAC oracle on messages m

 The challenger uses MAC(k, m) to return output

 Finally, A returns tuple (m*, T*)

 A wins iff. Vf(k, m*,T*) = 1 and m* not queried to Sign

Exercise: try to write this def. in game form!



UNFORGEABILITY IN GAME NOTATION

 Existential Unforgeability against Chosen Message 

Attacks – EUF-CMA:

𝐾՚
$
KGen(1𝜆)

𝑀∗, 𝑇∗ ՚A𝑀𝐴𝐶𝐾 ∗

A wins iff. 𝑀∗ not queried to MAC𝐾(𝑀
∗)

VfK M∗, T∗ = 1

 Trivial attacks:

 A could just guess a correct tag, or a correct key

 The probability is 2 MAC𝐾(∗) + 2 KSpace

 Goal: make that probability negligible in 𝜆

 (𝑘, 𝜀)-security: A with 𝑘 MAC queries wins w.p. 𝜀



CONSTRUCTING MACS

 Two ways of doing it:

 Using block ciphers

 Based on hash functions (which we will see later)

 CBC-MAC:

𝑀1 𝑀2 𝑀𝑛

𝐶1 𝐶2 𝐶𝑛

𝐸𝐾 𝐸𝐾 𝐸𝐾

0…0

⊕ ⊕ ⊕.....



CBC-MAC AND ITS SECURITY

 If the block cipher 𝐸𝐾 is a PRP, then:

 If we consider only messages of a fixed length, we can 

prove CBC-MAC is a PRF (no proof here)

 Any MAC scheme that is a PRF is unforgeable (but 

not the reverse). Proof in TDs

 However, if we can allow messages of ANY 

length, we can play on prefixes to get a forgery



A PREFIX-BASED ATTACK

 Ask for the MAC of some 1-block message 𝑀1:

𝐶1 = 𝐸𝐾(0⊕𝑀1)

 Then ask for the MAC of this ciphertext:

𝐶2 = 𝐸𝐾(0⊕ 𝐶1)

 Look at MAC of 𝑀1| 𝟎

 Collision: 𝐶1 and 𝑀1| 𝟎

 Generalization of attack: TDs

𝑀1

𝐶1

𝐸𝐾

0…0

⊕ ⊕

0…0

𝐸𝐾

𝐶2



MACS FOR VARIABLE LENGTHS

 Problem is that MAC of messages of any lengths is of 

length 1 block exactly (last c-text block)

 We get collisions of messages of variable length

 Obvious solution: authenticate the length, too.

 Option 1: if length 𝑛 is known: MAC(𝐾; 𝑛,𝑀1, … ,𝑀𝑛)

 In theory, perfect; in practice, Vaudenay attacks

 Option 2: length unknown, 1 key: MAC(𝐾;𝑀1, … ,𝑀𝑛, 𝑛)

 Broken in 1984

 Option 3: use 2 keys: 𝐸𝐾′(MAC𝐾(𝑀1, … ,𝑀𝑛))



HASH FUNCTIONS AND MACS



HASH FUNCTIONS

 Another way to build MACs (will see later)

 What is a hash function?

 Function 𝑓: 0,1 ∗ → 0,1 𝑛 with variable-length input 

and fixed-length output

 Inevitably, this means collisions. Why?

 Ideally not many, and hard to find



SECURITY OF HASH FUNCTIONS

 Weak collision resistance: for any 𝑥 ∈ 0,1 ∗ it is hard 

to find 𝑥′ ≠ 𝑥 such that ℎ 𝑥′ = ℎ 𝑥

 For any 𝑥 (universal) there exists no adversary A which, 

given 𝑥 and access to ℎ, can output such an 𝑥′ with non-

negligible probability

 Average: for 𝑥 ՚
$

0,1 ∗, there exists no adversary A
which, given 𝑥 and access to ℎ, can output such an 𝑥′ with 

non-negligible probability

 Strong collision resistance: it is hard to find any pair 

𝑥, 𝑥′ ≠ 𝑥 such that ℎ 𝑥 ≠ ℎ(𝑥′)

 In general, easier to find than for fixed 𝑥



FINDING COLLISIONS

 The birthday paradox:

 Probability 1 in 23 people have the same bday as Henri 

Poincaré (April 29th) : 23/365

 Probability that 2 people in 23 have the same birthday : 

σ𝑖=1
365 365

2

1

365

2
, which gives about 

1

2

 What does this mean for us?

 First case: similar to weak collision resistance

 Second case: similar to strong collision resistance



MERKLE DAMGAARD

 Arbitrary-length input from fixed-length input 

hash function

 Say ℎ: 0,1 512 → 0,1 160 (standard input and 

output sizes)

 Want to extend it to 𝐻: 0,1 ∗ → 0,1 160

 How do we do this?

 MD: kind of CBC-mode extension

 𝑀 = 𝑀1…𝑀𝑡 with length of 𝑀𝑖 equal to 512-160 = 352

ℎ ... ℎ 𝐻(𝑀)
0160

𝑀1 𝑀2 𝑀𝑡



SECURITY OF THIS CONSTRUCTION

 Theorem:

 For any adversary A that can find, with non negligible 

probability 𝑝A, a collision 𝑀,𝑀′ ≠ 𝑀 such that 𝐻 𝑀 =

𝐻 𝑀′ …

 ... There exists an adversary B that can find messages 

𝑚,𝑚′ ≠ 𝑚 with ℎ 𝑚 = ℎ 𝑚′ with non-negligible proba-

bility 𝑝B

 Conclusion: as long as ℎ is collision-resistant, 𝐻 is 

also collision-resistant



COLLISIONS AND COLLISIONS...

 First signs of weakness:

 Partial collisions, or collisions only in latter stages of 
the bigger 𝐻 function

 Further weaknesses:

 First true collisions appear, but they are heavily con-
trived: it’s a strong collision-resistance attack
 While valid they fail to convince users that this means in a 

short time the hash function will be broken

 Hash function is “broken”:

 We get collisions on chosen messages: given certifi-
cate 𝑀, we find certificate 𝑀′ = 𝑀 s.t. 𝐻 𝑀 = 𝐻(𝑀′)



MACS FROM HASH FUNCTIONS

 To key or not to key: MACs use keys, hashes do not

 From no-key to keys:

 First idea: hash key, then message (key for authen-

tication, m for integrity): problem is something similar to 

CBC prefix problem for Merkle Damgaard

 Second idea: hash message, then key (now message is 

variable prefix, rather than the constant k): can do birth-

day attack on MAC to find collision in hash function ℎ

 Better solution: use something like HMAC



HMAC

 Given key 𝐾, message 𝑚, hash function ℎ

 Also take 2 fixed, known 64-bit strings: padin, padout
 Key 𝐾 of 64 bits – or padded to that length if necessary

 HMAC is defined then as:

 MAC𝐾 𝑚 ≔ ℎ 𝐾⊕ padout , ℎ(𝐾 ⊕ padin, 𝑚)

 There exists a proof (which we will not cover here), that 

says that if HMAC is insecure, then:

 ℎ is not collision resistant; or

 The output of ℎ is “predictable”



UNFORGEABILITY, PRF, PRP

 HMACs must only offer unforgeability

 However, the use of the hash function gives more 

security than just unforgeability

 Pseudorandomness vs. Unforgeability

 (Keyed) Pseudorandomness (PRP, PRF), always 

implies unforgeability

 However, one can have an unforgeable scheme whose 

output is not indistinguishable from random



WHAT WE LEARNED TODAY



CIPHERS

 Stream ciphers

 Most of them rely on OTP + PRG paradigm

 RC4 is very efficient, but biased and in fact insecure

 Block ciphers

 Ideally a PRP of a message of a specific length

 Can be extended to longer messages by using modes

 ECB is bad, CBC is average, CTR seems best

 Ideally they are PRFs



MESSAGE AUTHENTICATION CODES

 MACs provide a proof of integrity and authenti-

cation of sender, by means of a shared key

 Security: MACs should be existentially unforge-

able under chosen ciphertext attacks (EUF-CMA)

 Constructions:

 Based on block ciphers

 Using hash functions



HASH FUNCTIONS

 Take input of varying length and outputs fixed-

length strings

 Hash functions must be collision-resistant

 Weak CR: given 𝑥, find 𝑥′ with 𝐻 𝑥 = 𝐻(𝑥′)

 Strong CR: finx 𝑥, 𝑥′ with 𝐻 𝑥 = 𝐻(𝑥′)

 Can be extended from smaller compression functions 

to larger hash functions using Merkle Damgaard

 HMAC:

 Uses hash function twice, with outer and inner pad 

functions


