
REVIEW OF LAST TIME

 Security in symmetric encryption:

 The IND-CPA security game

 A bit of PRF

 How to prove OTP + PRG secure

 Proof techniques

 Game hopping

 Game equivalence by indistinguishability of games



PRPS AND PRFS

Block ciphers, cryptanalysis, symmetric 

encryption



PRG IN OTP

 Recall the OTP

 Traditional OTP for K =M = {0,1}𝑚

 Choose random 𝑘՚
$
K

 Encrypt message 𝑚 to : 𝑐 ≔ 𝑘 ⊕𝑚

 Decrypt ciphertext 𝑐 as: ෝ𝑚 ≔ 𝑐 ⊕ 𝑘

 Now replace random key generation by PRG:

 OTP for M = {0,1}𝑚 with K = {0,1}𝑛 and 𝑛 < 𝑚

 Use a bounded-secure PRG 𝐺: {0,1}𝑛→ 0,1 𝑚

 KeyGen: choose (once) 𝑘 ՚
$
K

 Encrypt message 𝑚 as 𝑐 ≔ 𝐺 𝑘 ⊕𝑚

 Decrypt message as: ෝ𝑚 ≔ 𝑐 ⊕𝐺(𝑘)



STREAM AND BLOCK CIPHERS



STREAM CIPHERS

 Based on pseudorandom generators

 Usually in the PRG + OTP structure, encrypting 

traffic as it is sent

 Note: symmetric in nature, and require synhroniza-

tion for the masking string (output of PRG)

 Some examples: SEAL, A5, RC4

 If PRG is efficient (it usually is), the construction is 

very fast

 RC4 is probably the most often used stream cipher 

today, but some of its output bytes are biased, leading 

to breaking WEP and TLS + RC4



RC4

 Designed by Ron Rivest in 1987

 Used in protocols like TLS/SSL, WEP, etc.

 Starts with a key of 256 bytes: 𝑘0, … 𝑘255 (if not 

long enough, we pad it with itself)

 Also need permutation on (byte) positions 0,… , 255, 

denoted 𝑆, which is shuffled at each round



GENERIC STRUCTURE

 Stream ciphers must generate “pad” as we go
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GENERIC STRUCTURE

 Stream ciphers must generate “pad” as we go

 Start with key K and a permutation S

 Do Key-Scheduling (KSA): use the key to initiate 

permutation

 Do PR generating algorithm (PRGA) to generate the 

key-stream

 Main problem: key-streams will eventually repeat 

themselves, and that’s where cryptanalysis strikes



RC4 DESCRIPTION

 Initialization:

 𝑆0 = 0; 𝑆1 = 1;… 𝑆255 = 255

 Key 𝐾0; … 𝐾255
 Current index  𝑗 = 0

 KSA (instantiate S)

 For 𝑖 = 1 𝑡𝑜 255:

 𝑗 ≔ 𝑗 + 𝑆𝑖 + 𝐾𝑖 mod 256

 Swap 𝑆𝑖 and 𝑆𝑗

 PRGA (use S to get key-byte)

 Update: 𝑖 = 𝑖 + 1 mod 256 and 𝑗 = 𝑗 + 𝑆𝑖 mod 256

 Swap 𝑆𝑖 and 𝑆𝑗

 Output 𝑆𝑟 with 𝑟 = 𝑆𝑖 + 𝑆𝑗 mod 256



OUTPUTTING THE KEY STREAM

Source: Wikipedia.org



RC4 PROBLEMS

 Ideally: 

 We want that the output bytes be uniformly random

 Or at least, that they are indistinguishable from 

uniformly random, by a poly-time distinguisher

 Bias in some of the bits:

 Probability that first two bytes are 0 is 2−16 + 2−32

 More attacks were recently published by Paterson et 

al.

 At the moment RC4 is discouraged by TLS/SSL (but 

because it’s efficient, it’s still being used a lot)



BLOCK CIPHERS

 Stream ciphers pad plaintext with PRG output

 Principle usually follows OTP

 Block ciphers act like a symmetric encryption on 

plaintext blocks

 Idea: plaintext is a string of 𝑛 bits, e.g. 64, or 128

 A good permutation of the bits makes the output look 

unrelated to the input

 Given key 𝐾 and message 𝑀 of size 𝑛:

 Encryption Enc𝐾 maps 𝑀 to a ciphertext 𝐶

 Decryption Dec𝐾 maps ciphertext to plaintext



PERMUTATIONS AND PRPS

 Ideally:

 Use a truly random permutation on the input domain

 However, that means we need a key as large as the 

message

 In practice:

 Use a pseudorandom permutation (PRP)

 Then rely on indistinguishability of PRPs from RPs

 The block cipher takes inputs of size 𝑛 and returns 

output of same size

 If we need to encrypt bigger texts, use one of several modes



ECB MODE

 Very simple: encrypt each block separately:

𝑀1 𝑀2 𝑀𝑛

𝐶1 𝐶2 𝐶𝑛

𝐸𝐾 𝐸𝐾 𝐸𝐾



ECB PROPERTIES

 Advantages

 Highly efficient and not harder to implement securely 

than the single-block encryption method

 Parallelizable

 Security:

 What happens if we have repetition in the input 

message?   (𝑀1, 𝑀2 = 𝑀1, 𝑀3…)

 How about substitution/addition of message blocks?

 Known for being insecure against active attackers



CBC MODE

 Link blocks together by using output blocks in 

the encryption of the following blocks

 An IV is used as a “seed”, but can be sent in clear

𝑀1 𝑀2 𝑀𝑛

𝐶1 𝐶2 𝐶𝑛

𝐸𝐾 𝐸𝐾 𝐸𝐾

IV

⊕ ⊕ ⊕.....



CBC PROPERTIES

 Error handling: 

 Say one ciphertext block is corrupted

 This only affects the decryption of the next block

𝑀1 𝑀2 𝑀𝑛

𝐶1 𝐶2 𝐶𝑛

𝐷𝐾 𝐷𝐾 𝐷𝐾

IV

⊕ ⊕ ⊕.....



CBC SECURITY

 Not easy to insert messages

 Plaintext patterns (repetitions, etc.)  not detectable

 The IV:

 If IV is chosen uniformly at random and the encryption 

algorithm is a “good” permutation, then CBC encryption 

is a “good” encryption scheme

 If IV is constant, CBC encryption does not hide prefixes

 You will often hear “do not use CBC modes in 

TLS/SSL”. This is sound advice, but not because of 

weaknesses in the design of encryption



RECALL: GOOD SYMMETRIC ENCRYPTION

 𝑘՚
$
KGen(1𝛾)

𝑏՚
$

0,1

m0, m1 ՚ 𝐴Enc 𝛾 with 𝑚0 = |𝑚1|

𝑐 ՚ Enc(𝑘,𝑚𝑏)

𝑑 ՚ 𝐴Enc 𝛾, 𝑐

𝐴 wins iff 𝑑 = 𝑏

 (𝒒, 𝝐)-secure Symmetric Encryption: 

A symmetric-key encryption scheme SEnc is (q, 𝜖)-
secure if, and only if, an adversary making at most 𝑞

queries to Enc wins w.p. at most 
1

2
+ 𝜖



IND-CPA AND DETERMINISTIC ENCRYPTION

 A generic IND-CPA attack:

 C chooses 𝐾 by running Key Generation

 A picks 𝑀0, 𝑀1 and sends them to the Enc𝐾 oracle:

𝐶𝑖 ≔ Enc𝐾 𝑀𝑖 for 𝑖 = 0,1

 A sends 𝑀0, 𝑀1 to C, who encrypts 𝑀𝑏 for 𝑏՚
$
{0,1}:

If 𝑏 = 0, then 𝐶 ≔ 𝐸𝑛𝑐𝐾(𝑀0)

Else, 𝐶 ≔ 𝐸𝑛𝑐𝐾(𝑀1) .

 When A receives 𝐶, it compares it with 𝐶0,, 𝐶1, then 

returns 𝑑 = 𝑖 if 𝐶 = 𝐶𝑖; 𝑖 ∈ {0,1}; else A sets 𝑑՚
$
{0,1}

 This always works if the encryption is deterministic. 
Why?



CBC WITH PREDICTALE IV

 Bug in TLS 1.0: 𝐼𝑉 for message 𝑀′ is last cipher-

text block of previous message 𝑀

 Attack:

 First ask encryption of 0, receiving (𝐼𝑉, Enc𝐾(𝐼𝑉))

 Remember last ciphertext block, call it 𝐼𝑉′

 This is the IV for the next ciphertext

 Submit 𝑀0 = 𝐼𝑉 ⊕ 𝐼𝑉′ and a random 𝑀1 to challenger

 Now, if 𝑏 = 0, then Enc𝐾 𝐼𝑉′ ⊕ 𝐼𝑉 ⊕ 𝐼𝑉′ = Enc𝐾(𝐼𝑉)



CTR MODE ENCRYPTION

 Different IVs rather than a single one

 Parallelizable; IVs link ciphertext blocks together

𝑀1

𝐶1

𝐸𝐾

IV

⊕

𝑀2

𝐶2

𝐸𝐾

IV + 1

⊕

𝑀𝑛

𝐶𝑛

𝐸𝐾

IV + n − 1

⊕

.....



CTR MODE PROPERTIES

 Efficiency and implementation:

 Fully parallelizable once IV known

 Some pre-processing can be done (such as encryption 

of all vectors from IV to IV+n-1)

 Security:

 Note that this time, the length of IV need not be 

exactly equal to n

 Hence, the symmetric encryption scheme is a 

function, rather than a permutation

 In CTR mode, if encryption scheme is a PRF, then in 

CTR mode it has IND-CPA security



WHAT IS A PRF?

 Family of functions 𝐹: {0,1}𝑘× 0,1 𝑛 → 0,1 𝑚

 First parameter is the key, chosen only once, so we 

regard the function as 𝐹𝑘: 0,1
𝑛 → 0,1 𝑚

 Notion of PRF (indistinguishability from random):

PRFK

Key 𝐾
length 𝑘

0/1

𝑅(𝑥)

?
? ?

?

𝐹𝐾(𝑥)
1 0

𝑥



WHAT IS A PRF?

 Family of functions 𝐹: {0,1}𝑘× 0,1 𝑛 → 0,1 𝑚

 First parameter is the key, chosen only once, so we 

regard the function as 𝐹𝑘: 0,1
𝑛 → 0,1 𝑚

 Notion of PRF (indistinguishability from random):

𝑘՚
$

0,1 𝑘

𝑑 ՚ A𝐺𝑏(∗)

A wins iff. 𝑑 = 𝑏

 (𝑘, 𝜀)-PR-ness: 𝑘 queries to 𝐺𝑏, A wins w.p. at most 
1

2
+ 𝜀

𝐺𝑏(𝑥)

If 𝑏 = 0, return 𝑅(𝑥)
Else, return 𝐹𝐾(𝑥)



PRFS AND PRPS

 For a keyed function 𝐹𝐾: 0,1
𝑛 → 0,1 𝑛,we may 

also speak of permutations

 Permutation: domain and range are the same

 Bijection: 𝐹𝐾 is keyed permutation if for all 𝐾, 𝐹𝐾 is 1-

to-1 (bijective; thus invertible)

 Pseudo-random permutation:

 Keyed Permutation

 Indistinguishability from a random permutation: 

akin to PRF game, but with equal domain/range, and 

the bijective property



IND-CPA SECURITY FROM PRF

 Assumption: 

 Use PR function 𝐹: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛

 Choose secret key 𝐾 of length 𝑘 as output of Kgen

 Both encryptor and decryptor know 𝐹 and key 𝐾

 Encryption of some message 𝑀 ∈ 0,1 𝑛:

 Pick random number 𝑟՚
$
0,1 𝑛

 Encrypt 𝑀 to (𝑟;𝑀 ⊕ 𝐹𝐾(𝑟))

 Decryption of ciphertext 𝐶 = (𝐶1; 𝐶2):

 Decrypt 𝐶 to 𝑀 ≔ 𝐶2 ⊕𝐹𝐾(𝐶1)



SECURITY OF THIS CONSTRUCTION

 IND-CPA security:

 For any adversary A against the IND-CPA security of the 

encryption scheme, making 𝑘 queries to the encryption 

oracle and winning w.p. 
1

2
+ 𝜀𝐴 …

 ... There exists an adversary B against the pseudo-

randomness of the function 𝐹, which makes 𝑘 queries to its 

generation oracle, and wins with probability:

𝑃𝑏 ≥
1

2
+ 𝜀𝐴 +

𝑘

2𝑛

 Proof: in TDs

Why the additional term?



MESSAGE AUTHENTICATION

CODES (MACS)



UNFORGEABILITY AND MACS

 Message Authentication Codes prove message 

integrity and indicate its provenance (sender)

 MACs do not hide the message they authenticate

 Quite the opposite: often you would send M along

 MACs do not entirely hide the key either

 They can reveal a part of the key, as long as it is still 

hard to recover the other part (say a half)

 Their purpose is to authenticate, not to hide



MAC SCHEME SYNTAX

 Tuple of algorithms KGen,MAC, Vf s.t.: 

 KGen(1𝛾) outputs symmetric key 𝑘

 MAC(k,M) outputs tag 𝑇 for message M

 Vf(k,M, T) outputs 1 if 𝑇 verifies for 𝑀 and 0 otherwise

 Correctness (of MAC and Vf)

 For any 𝐾,𝑀, if 𝑇 = MAC(𝐾;𝑀), it holds Vf 𝐾;𝑀, 𝑇 = 1

MAC

𝑀, 𝑘

Vf
𝑇,𝑀

𝑘

0/1

KGen

𝑘

𝑘



MAC SECURITY INTUITION

 How do we use a MAC?

 Assume Alice sends message and MAC to Bob

 Say message is unencrypted, an update or a file

 An adversary may intercept, change, or replace it

 Bob receives the message and the MAC

 Bob verifies the MAC. Ideally:

 If the MAC verifies: it’s Alice’s untampered message

 If the MAC verification fails: the message was tampered with

 A MAC cannot be forged for a new message

 But using an old (𝑀,𝑇)-tuple will lead to verification



THE UNFORGEABILITY GAME

 Not real/random indistinguishability this time

 Unforgeability of fresh messages:

MACK

𝑀𝑖

𝑇𝑖

𝑀∗, 𝑇∗VfK

0/1

 Adv. wins iff. 𝑀∗ ∉ {𝑀1, … ,𝑀𝑛} and Vf 𝐾;𝑀∗, 𝑇∗ = 1



GAME DESCRIPTION

 A plays the game against challenger

 First, challenger generates key, but keeps it private

 A can query a MAC oracle on messages m

 The challenger uses MAC(k, m) to return output

 Finally, A returns tuple (m*, T*)

 A wins iff. Vf(k, m*,T*) = 1 and m* not queried to Sign

Exercise: try to write this def. in game form!



UNFORGEABILITY IN GAME NOTATION

 Existential Unforgeability against Chosen Message 

Attacks – EUF-CMA:

𝐾՚
$
KGen(1𝜆)

𝑀∗, 𝑇∗ ՚A𝑀𝐴𝐶𝐾 ∗

A wins iff. 𝑀∗ not queried to MAC𝐾(𝑀
∗)

VfK M∗, T∗ = 1

 Trivial attacks:

 A could just guess a correct tag, or a correct key

 The probability is 2 MAC𝐾(∗) + 2 KSpace

 Goal: make that probability negligible in 𝜆

 (𝑘, 𝜀)-security: A with 𝑘 MAC queries wins w.p. 𝜀



CONSTRUCTING MACS

 Two ways of doing it:

 Using block ciphers

 Based on hash functions (which we will see later)

 CBC-MAC:

𝑀1 𝑀2 𝑀𝑛

𝐶1 𝐶2 𝐶𝑛

𝐸𝐾 𝐸𝐾 𝐸𝐾

0…0

⊕ ⊕ ⊕.....



CBC-MAC AND ITS SECURITY

 If the block cipher 𝐸𝐾 is a PRP, then:

 If we consider only messages of a fixed length, we can 

prove CBC-MAC is a PRF (no proof here)

 Any MAC scheme that is a PRF is unforgeable (but 

not the reverse). Proof in TDs

 However, if we can allow messages of ANY 

length, we can play on prefixes to get a forgery



A PREFIX-BASED ATTACK

 Ask for the MAC of some 1-block message 𝑀1:

𝐶1 = 𝐸𝐾(0⊕𝑀1)

 Then ask for the MAC of this ciphertext:

𝐶2 = 𝐸𝐾(0⊕ 𝐶1)

 Look at MAC of 𝑀1| 𝟎

 Collision: 𝐶1 and 𝑀1| 𝟎

 Generalization of attack: TDs

𝑀1

𝐶1

𝐸𝐾

0…0

⊕ ⊕

0…0

𝐸𝐾

𝐶2



MACS FOR VARIABLE LENGTHS

 Problem is that MAC of messages of any lengths is of 

length 1 block exactly (last c-text block)

 We get collisions of messages of variable length

 Obvious solution: authenticate the length, too.

 Option 1: if length 𝑛 is known: MAC(𝐾; 𝑛,𝑀1, … ,𝑀𝑛)

 In theory, perfect; in practice, Vaudenay attacks

 Option 2: length unknown, 1 key: MAC(𝐾;𝑀1, … ,𝑀𝑛, 𝑛)

 Broken in 1984

 Option 3: use 2 keys: 𝐸𝐾′(MAC𝐾(𝑀1, … ,𝑀𝑛))



HASH FUNCTIONS AND MACS



HASH FUNCTIONS

 Another way to build MACs (will see later)

 What is a hash function?

 Function 𝑓: 0,1 ∗ → 0,1 𝑛 with variable-length input 

and fixed-length output

 Inevitably, this means collisions. Why?

 Ideally not many, and hard to find



SECURITY OF HASH FUNCTIONS

 Weak collision resistance: for any 𝑥 ∈ 0,1 ∗ it is hard 

to find 𝑥′ ≠ 𝑥 such that ℎ 𝑥′ = ℎ 𝑥

 For any 𝑥 (universal) there exists no adversary A which, 

given 𝑥 and access to ℎ, can output such an 𝑥′ with non-

negligible probability

 Average: for 𝑥 ՚
$

0,1 ∗, there exists no adversary A
which, given 𝑥 and access to ℎ, can output such an 𝑥′ with 

non-negligible probability

 Strong collision resistance: it is hard to find any pair 

𝑥, 𝑥′ ≠ 𝑥 such that ℎ 𝑥 ≠ ℎ(𝑥′)

 In general, easier to find than for fixed 𝑥



FINDING COLLISIONS

 The birthday paradox:

 Probability 1 in 23 people have the same bday as Henri 

Poincaré (April 29th) : 23/365

 Probability that 2 people in 23 have the same birthday : 

σ𝑖=1
365 365

2

1

365

2
, which gives about 

1

2

 What does this mean for us?

 First case: similar to weak collision resistance

 Second case: similar to strong collision resistance



MERKLE DAMGAARD

 Arbitrary-length input from fixed-length input 

hash function

 Say ℎ: 0,1 512 → 0,1 160 (standard input and 

output sizes)

 Want to extend it to 𝐻: 0,1 ∗ → 0,1 160

 How do we do this?

 MD: kind of CBC-mode extension

 𝑀 = 𝑀1…𝑀𝑡 with length of 𝑀𝑖 equal to 512-160 = 352

ℎ ... ℎ 𝐻(𝑀)
0160

𝑀1 𝑀2 𝑀𝑡



SECURITY OF THIS CONSTRUCTION

 Theorem:

 For any adversary A that can find, with non negligible 

probability 𝑝A, a collision 𝑀,𝑀′ ≠ 𝑀 such that 𝐻 𝑀 =

𝐻 𝑀′ …

 ... There exists an adversary B that can find messages 

𝑚,𝑚′ ≠ 𝑚 with ℎ 𝑚 = ℎ 𝑚′ with non-negligible proba-

bility 𝑝B

 Conclusion: as long as ℎ is collision-resistant, 𝐻 is 

also collision-resistant



COLLISIONS AND COLLISIONS...

 First signs of weakness:

 Partial collisions, or collisions only in latter stages of 
the bigger 𝐻 function

 Further weaknesses:

 First true collisions appear, but they are heavily con-
trived: it’s a strong collision-resistance attack
 While valid they fail to convince users that this means in a 

short time the hash function will be broken

 Hash function is “broken”:

 We get collisions on chosen messages: given certifi-
cate 𝑀, we find certificate 𝑀′ = 𝑀 s.t. 𝐻 𝑀 = 𝐻(𝑀′)



MACS FROM HASH FUNCTIONS

 To key or not to key: MACs use keys, hashes do not

 From no-key to keys:

 First idea: hash key, then message (key for authen-

tication, m for integrity): problem is something similar to 

CBC prefix problem for Merkle Damgaard

 Second idea: hash message, then key (now message is 

variable prefix, rather than the constant k): can do birth-

day attack on MAC to find collision in hash function ℎ

 Better solution: use something like HMAC



HMAC

 Given key 𝐾, message 𝑚, hash function ℎ

 Also take 2 fixed, known 64-bit strings: padin, padout
 Key 𝐾 of 64 bits – or padded to that length if necessary

 HMAC is defined then as:

 MAC𝐾 𝑚 ≔ ℎ 𝐾⊕ padout , ℎ(𝐾 ⊕ padin, 𝑚)

 There exists a proof (which we will not cover here), that 

says that if HMAC is insecure, then:

 ℎ is not collision resistant; or

 The output of ℎ is “predictable”



UNFORGEABILITY, PRF, PRP

 HMACs must only offer unforgeability

 However, the use of the hash function gives more 

security than just unforgeability

 Pseudorandomness vs. Unforgeability

 (Keyed) Pseudorandomness (PRP, PRF), always 

implies unforgeability

 However, one can have an unforgeable scheme whose 

output is not indistinguishable from random



WHAT WE LEARNED TODAY



CIPHERS

 Stream ciphers

 Most of them rely on OTP + PRG paradigm

 RC4 is very efficient, but biased and in fact insecure

 Block ciphers

 Ideally a PRP of a message of a specific length

 Can be extended to longer messages by using modes

 ECB is bad, CBC is average, CTR seems best

 Ideally they are PRFs



MESSAGE AUTHENTICATION CODES

 MACs provide a proof of integrity and authenti-

cation of sender, by means of a shared key

 Security: MACs should be existentially unforge-

able under chosen ciphertext attacks (EUF-CMA)

 Constructions:

 Based on block ciphers

 Using hash functions



HASH FUNCTIONS

 Take input of varying length and outputs fixed-

length strings

 Hash functions must be collision-resistant

 Weak CR: given 𝑥, find 𝑥′ with 𝐻 𝑥 = 𝐻(𝑥′)

 Strong CR: finx 𝑥, 𝑥′ with 𝐻 𝑥 = 𝐻(𝑥′)

 Can be extended from smaller compression functions 

to larger hash functions using Merkle Damgaard

 HMAC:

 Uses hash function twice, with outer and inner pad 

functions


